Measuring FX Exposure

Transaction Exposure 1

FX Risk Management

• FX Exposure: Review

- At the firm level, currency risk is called *exposure*.
- TE is simply to calculate: Value in DC of a specific transaction wit a certain date/maturity denominated in FC.
- We can measure TE, and analyze the sensitivity of TE to changes in S_t. - Use a statistical distribution or a simulation.

The less sensitive TE is to S_t , the lower the need to pay attention to $e_{f,t}$.

- MNCs have measures for NTE for:
- a single transaction
- all transactions (Netting, where co-movements of St's are incorporated

• The last measure approaches TE with a portfolio approach, where currency correlations are taken into account.

• Correlations: Brief Review

Recall that the co-movement between two random variables can be measured by the correlation coefficient. The correlation between the random variables X and Y is given by:

 $Corr(X,Y) = \rho_{XY} = \sigma_{XY} / (\sigma_Y \sigma_Y).$

Interpretation of the correlation coefficient ($\rho_{xy} \in [-1, 1]$): If $\rho_{xy} = 1$, X changes by 10%, Y also changes by 10%. If $\rho_{xy} = 0$, X changes by 10%, Y is not affected –(linearly) independent. If $\rho_{xy} = -1$, X changes by 10%, Y also changes by -10%.

• Netting				
MNC take into account the correlations among the major currencies to				
calculate Net TE	\Rightarrow Portfolio Approach.			
A U.S. MNC:	C: Subsidiary A with $CF(in EUR) > 0$			
	Subsidiary B with CF(in GBP) < 0			
	$\rho_{GBP,EUR}$ is very high and positive.			
	Net TE might be very low for this MNC.			
• Hedging decisions are usually not made transaction by transaction.				
Rather, they are made based on the exposure of the portfolio.				

Example: Swiss Cruises.Net TE (in USD):USD 1 million. Due: 30 days.Loan repayment:CAD 1.50 million. Due: 30 days. $S_t = 1.47$ CAD/USD. $\rho_{CAD,USD} = .924$ (from 1990 to 2001)Swiss Cruises considers the Net TE (overall) to be close to zero. ¶Note 1: Correlations vary a lot across currencies. In general, regional currencies are highly correlated. From 2000-2007, the GBP and EUR had an average correlation of .71, while the GBP and the MXN had an average correlation of -.01.Note 2: Correlations also vary over time.

Sensitivity Analysis for portfolio approach						
Do a simulation: assume different scenarios attention to correlations!						
Example: IBM has the following CFs in the next 90 days						
FC	Outflows	Inflows	S _t	Net Inflows		
GBP	100,000	25,000	1.60 USD/GBP	(75,000)		
EUR	80,000	200,000	1.05 USD/EUR	120,000		
NTE (USD)= EUR 120K*1.05 USD/EUR+(GBP 75K)*1.60 USD/GBP						
= USD 6,000 (this is our baseline case)						
Situation 1 : Assume $\rho_{GRPEUR} = 1$. (EUR and GBP correlation is high.)						
<u>Scenario (i)</u> : EUR appreciates by 10% against the USD ($e_{fEUR} = .10$).						
$S_t = 1.05 \text{ USD/EUR} * (1+.10) = 1.155 \text{ USD/EUR}$						
Since $\rho_{GBPEUR} = 1 \implies S_t = 1.60 \text{ USD/GBP} * (1+.10) = 1.76 \text{ USD/GBP}$						
NTE (USD) =EUR 120K*1.155 USD/EUR+(GBP 75K)*1.76 USD/GBP						
= USD 6,600 (10% change.)						

Example (continuation):

<u>Scenario (ii)</u>: EUR depreciates by 10% against the USD ($e_{f,EUR,t}$ =-.10). S_t = 1.05 USD/EUR * (1-.10) = 0.945 USD/EUR

Since $\rho_{GBP,EUR} = 1 \implies S_t = 1.60 \text{ USD/GBP} * (1-.10) = 1.44 \text{ USD/GBP}$

NTE (USD)=EUR 120K*0.945 USD/EUR+(GBP 75K)*1.44 USD/GBP = USD 5,400. (-10% change)

Now, we can specify a range for NTE \Rightarrow NTE \in [USD 5,400, USD 6,600]

<u>Note</u>: The NTE change is exactly the same as the change in S_t . If a firm has matching inflows and outflows in highly positively correlated currencies –i.e., the NTE is equal to zero-, then changes in S_t do not affect NTE. That's very good.

Example (continuation): Situation 2: Suppose the $\rho_{GBP,EUR} = -1$ (NOT a realistic assumption!) <u>Scenario (i)</u>: EUR appreciates by 10% against the USD ($e_{f,EUR,t} = .10$). $S_t = 1.05 \text{ USD/EUR} * (1+.10) = 1.155 \text{ USD/EUR}$ Since $\rho_{GBP,EUR} = -1 \implies S_t = 1.60 \text{ USD/GBP} * (1 - .10) = 1.44 \text{ USD/GBP}$ NTE (USD)= EUR 120K*1.155 USD/EUR+(GBP 75K)*1.44 USD/GBP = USD 30,600. (410% change) <u>Scenario (ii)</u>: EUR depreciates by 10% against the USD ($e_{f,EUR,t} = -.10$). $S_t = 1.05 \text{ USD/EUR} * (1-.10) = 0.945 \text{ USD/EUR}$ Since $\rho_{GBP,EUR} = -1 \implies S_t = 1.60 \text{ USD/GBP} * (1+.10) = 1.76 \text{ USD/GBP}$ NTE (USD)=EUR 120K*0.945 USD/EUR+(GBP 75K)*1.76 USD/GBP = (USD 18,600). (-410% change) Now, we can specify a range for NTE $\implies NTE \in [(USD 18,600), USD 30,600]$

Example (continuation):

<u>Note</u>: The NTE has ballooned. A 10% change in exchange rates produces a dramatic increase in the NTE range.

 \Rightarrow Having non-matching exposures in different currencies with negative correlation is very dangerous.

• Considerations for IBM

IBM can assume a distribution (say, bivariate normal) with a given correlation (estimated from the data) and, then, draw many scenarios for the S_t 's to generate an empirical distribution for the NTE. From this simulated distribution, IBM will get a range –and a VAR- for the NTE.

IBM can assume a correlation from the ED and, then, jointly draw –i.e., draw together a pair, $e_{f,GBP,t} \& e_{f,EUR,t}$ – many scenarios for S_t to generate an empirical distribution for the NTE.

From this ED, IBM will get a range –and a VaR- for the NTE. ¶